The goal of this work is to summarize the findings from previous papers along with some additional comments and also to answer two basic questions: how to construct an efficient Veljko Milkovic two-stage oscillator and how to measure the quotient of efficiency of the constructed oscillator.
The method which the author proposes and some other people have already proposed similar methods, solve all the above problems and doesn’t need expensive equipment for measuring of forces, velocities and accelerations.
The method proposed measures the heights of both masses on both sides of the lever, which must be locked in its upper positions by a ratchet mechanism... more
It was my intention to strain gauge Mk 5.3 to see the input and output relationship;
the output to be measured between the secondary arm and the counter
weight, as in a Veljko Milkovic pendulum in hammer mode.
...Therefore, 9 watts input, for 13.18 watts output
= COP, 1.46
...The 9 watts was taken from the electrical input. The voltage and current were
measured on the DSO 101 and the power in watts derived therefrom.
I have arbitrarily taken the 9 watts for the COP calculations above. This is done
to err on the plus side as I have not included the draw of the ratchet solenoids
nor the draw of the electronics in these calculations. more
This document will analyze and present conclusions made by Mr.
Raymond Head from Texas, USA, who has been
working on the pendulum-lever system research and making Veljko Milkovic’s
two-stage mechanical oscillator replica.
...So, because paths passed by the weight and path passed by the
fingers were almost the same and because the weight was 80 pounds and
force of the fingers was less than 20 pounds, it should be obvious that
output energy was 4 times bigger than input energy.more
During public discussion, questions have frequently been addressed to Veljko
Milkovic as to why not calculate input energy of the raised
pendulum by using the simple formula for potential energy Ep = mgh. I have also found that this formula is easy to use and recommended it. However, over time, two problems using this simple formula were found...
...The method chosen by Jovan Bebic has solved both these problems. That is, to
keep adding energy to the pendulum once its starting angle was in position 1 at all times.
Thus the amplitude of the lever arm, as well as the output energy on the generator is
constant and easy to measure.more
This is the first experiment where the calculated energy surplus of Veljko
Milkovic’s two-stage mechanical oscillator has been precisely calculated.I put an adaptive device connecting to a generator on the second arm of the lever
of the oscillator. I measured the power in the generator created by the lever arm.
I kept the oscillation of the lever arm by manually influencing the pendulum with
a fish scale (dynamometer) connected to the handle of the pendulum. ...Therefore the input power was 1.368 W and average power obtained on the generator was 3.125 W. Taking into account everything said above, the conclusion is that the quotient of output and input power (and energy) is 3.125 / 1.368 = 2.284. more
In this analysis energy surplus of the two-stage mechanical oscillator by
Veljko Milkovic has been calculated in an experiment
performed with help of manual dynamo lamps, by placing a certain number of such
lamps under the lever while the oscillation of the pendulum has been maintained with
exactly the same lamp and in that way input and output work have been measured
(Force x Distance).
...Then we get that the efficiency of this model of two-stage mechanical oscillator is 2.8 times. Energy result - net gain of energy is 180%!more
This analysis measures output and input energy during operation of the two-stage
oscillator. Output energy was measured
based on the elevation of the weight at the right arm of the lever of the two-stage
mechanical oscillator, whereas input energy was measured based on the height of the
initial position of the pendulum when it was out of balance. ...Therefore, ratio of energy at the output and energy at the input is 22.89. more
Input energy is given to the system only once by increasing potential energy of the pendulum. It has been calculated using formula Ep = mgh for potential energy. Output energy has
been calculated by measuring distances left side of the lever passed from the upper
position till striking down into the pillar until pendulum stopped. Then formula Ep = mgh has been
taken again with mass m2 of the lever. This is actually the problem of the calculation. ...Because input energy was 0.787 J and output was 2.56 J, performance was 3.25. more
Veljko Milkovic demonstrates a scientific experiment showing the advantage of using the pendulum for overcoming friction versus direct pushing.
The goal of the experiment is to demonstrate the advantage of using the pendulum for overcoming friction force of a weight in comparison with direct pushing of it.
The arising question is does this experiment proves over unity behavior of the system or not?
Experiment description: Device used in experiment consists of a stand and elastic pendulum: 1) Blocked pendulum with the rest of the system can be regarded as rigid body. Using energy passed by strikes of a piston instrument, whole system can pass the path of 5mm. 2) With the same invested energy, passed by the piston instrument, the pendulum will push whole system with its kinetic energy and device will pass 15 times longer path. Further more some kinetic energy will stay unused in swinging pendulum.
Analysis of the influence of pendulum amplitude on movement of a pendulum system during sliding friction and rolling friction
Branislav Serdar, M.Sc. in mechanical engineering, has conducted his own research and expertise of Veljko Milkovic's elastic string pendulum experiment. The aim of this paper with accompanying video was to observe differences in the systems under the effect of impact forces on the metal ball of the pendulum, as well as to analyze and compare the results obtained. more
Official Electric Measurements
Official electric measurement by Institute for Energetics, Electronics and Telecommunications, University of Novi Sad (Serbia)
On request of Mr. Veljko Milkovic from Novi Sad, voltage, current and power provided by singlephase generator of alternating voltage (unmarked) have been measured, in the work mode for which it has
been designed. During the first measurement, the generator was run by the lever that could be moved in a vertical
plane. The generator was fixed (immobilized) and the force was applied in a straight line, from upwards
towards down. During the second measurement, the generator was held in a hand, and the force was transferred
by hand through the generator on the weight hanging on a lever and moving in a vertical plane.
The following values were acquired: the values of the measured electrical current varied between 91 mW and 228 mW (first measurement) and the values of the measured electrical current varied between 2 mW and 9 mW (second measurement). more
Measurements using an oscilloscope have
been performed: one handheld dynamo flashlight was used to push a pendulum in peak position
to maintain the oscillation of the pendulum and the other dynamo flashlight
was positioned under the lever on the output part of the oscillator. Measuring was performed and voltage values were acquired
for the dynamo flashlight used for maintaining the oscillation of the pendulum
and the one pressed by the lever during oscillations. more
Early Experiments & Measurements by Veljko Milkovic
M#1: More efficient than the simple double lever
Input-Output Energy Measurements: Early Measurement by Veljko Milkovic #1
M#2: Measurement with sponge-pipe
Input-Output Energy Measurements: Early Measurement by Veljko Milkovic #2
M#3: More efficient than cam mechanism
Input-Output Energy Measurements: Early Measurement by Veljko Milkovic #3
M#4: Efficiency of the two-stage oscillator - mechanical hammer
Input-Output Energy Measurements: Early Measurement by Veljko Milkovic #4
Commission members of the SAIN Academy, on the basis of the submitted documentation and following a successful demonstration, reached a conclusion on the Two-Stage Oscillator.
The goal of this work is to answer two basic questions: how to construct an efficient two-stage oscillator and how to measure the quotient of efficiency of the constructed oscillator.